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INTRODUCTION



RELATIONSHIP WITH PURITY AND APPROXIMATION THEORY

Let C be a finitely accessible additive category:

1. Additive.
2. Has direct limits.
3. Every object is a direct limit of finitely presented objects.
4. Cfp is skeletally small.

Theorem (Crawley-Boevey)
There exists a skeletally small additive category with split
idempotents S such that

C is equivalent to Flat-S

• Mod-S : The category of additive functors F : Sop → Ab.
• Flat-S : The full subcategory of flat functors.
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THE PURE-EXACT STRUCTURE

A sequence
0→ A→ B→ C→ 0

• Is pure-exact in C if

0→ Hom(F,A) → Hom(F,B) → Hom(F, C) → 0

is exact in Ab for any F ∈ Cfp.

• Is pure-exact in Flat-S if it is exact in Mod-S .

Pure-injectives in Flat-S
M ∈ Flat-S is pure-injective if and only if M is cotorsion in Mod-S .

Cotorsion modules in Mod-S
M is cotorsion if and only if Ext1S(M, F) = 0 for every F ∈ Flat-S .
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PRELIMINARIES

We can start with...
Flat cotorsion in module categories.

Notations
• R is a ring.
• Module means left R-module.
• Morphisms act on the right.

Objectives
Study the endomorphism ring of Flat cotorsion modules:

1. New type of rings: Strong exchange rings.
2. The exchange property.
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RIGHT STRONG EXCHANGE RINGS



MOTIVATION

This is the starting point of some works by P. A. Guil and I. Herzog
such as:

Theorem (Guil-Herzog)
If R is left cotorsion and J is its Jacobson radical, then idempotents
lift modulo J, R/J is von Neumann regular (semiregular) and left
self-injective.

• If M is flat and cotorsion, then EndR(M) is left cotorsion.

Theorem
If M is flat and cotorsion, then EndR(M) is semiregular and
EndR(M)/J is left self-injective
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MODULES WITH SEMIREGULAR ENDOMORPHISM RING

1. Quasi-injective modules.
2. Pure-injective modules.
3. Modules with local endomorphism ring.
4. Continuous modules.
5. And now... flat cotorsion

Question 1
Do they have a common property that implies that their
endomorphism ring is semiregular?

Answer
They have right strong exchange endomorphism ring.
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RIGHT COPRIME PAIRS

Right coprime pairs (right comaximal, right unimodular)
A right coprime pair in R is a pair of elements a,b ∈ R such that
aR+ bR = R. We denote the coprime pair ⟨a,b⟩.

• Equivalence relation between coprime pairs:

⟨a,b⟩ ≡ ⟨a′,b′⟩ ⇔ aR = a′R,bR = b′R

• Preorder relation between coprime pairs:

⟨a,b⟩ ≤ ⟨a′,b′⟩ ⇔ aR ≤ a′R,bR ≤ b′R

Notation
1. Right coprime pair = Equivalence class.
2. ⟨a,b⟩ = Equivalence class.
3. RCP(R) = Set of equivalence classes with the order ≤.
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RINGS CHARACTERIZED IN TERMS OF RCP(R)

Theorem
1. RR is indecomposable⇔ RCP(R) has exactly two minimal
elements.

2. R is local if and only if every coprime pair is trivial, i. e., is of the
form ⟨a,u⟩ with u a unit.

3. R is left perfect if and only if RCP(R) has DCC.
4. (Nicholson, Goodearl) R is exchange if and only if for any

⟨a,b⟩ ∈ RCP(R) there exists a minimal ⟨m,n⟩ with ⟨m,n⟩ ≤ ⟨a,b⟩.

Proof
Nicholson, Goodearl: R is exchange if and only if for any a ∈ R exists
e2 = e ∈ R with eR ≤ aR and (1− e)R ≤ (1− a)R.

• ⟨e, 1− e⟩ ≤ ⟨a, 1− a⟩!
• (Herzog-Guil) ⟨e, 1− e⟩ is minimal!
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DESCENDING CHAINS IN RCP(R)

Now they appear strong exchange rings

Theorem (Guil-Herzog)
If R is left cotorsion, then every descending chain in RCP(R) has a
minimal lower bound.

But not all chains!
Just the compatible chains
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COMPATIBLE DESCENDING CHAINS IN RCP(R)

Take a descending chain {⟨aα,bα⟩ | α < κ}.

For any γ < α < β, aβR ≤ aαR ≤ aγR. This means:

aαR ≤ aγR
aα = aγrγα

aβR ≤ aαR
aβ = aαrαβ

aβR ≤ aγR
aβ = aγrγβ

Notice
aβ = aγrγαrαβ but not neccesarily rγαrαβ = rγβ for all γ < α < β,
when β is limit.

Compatible descending chain
If there exist {rαβ | α < β < κ} and {sαβ | α < β < κ} with
• aβ = aαrαβ .
• rγβ = rγαrαβ .

• bβ = bαsαβ .
• sγβ = sγαsαβ .
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RIGHT STRONG EXCHANGE RINGS

Definition
R is right strong exchange if every compatible descending chain of
right coprime pairs has a minimal lower bound.
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EXAMPLES OF RIGHT STRONG EXCHANGE RINGS

Examples
The following are right strong exchange rings:

1. Left cotorsion, in particular, left self-injective and left
pure-injective rings.

2. Local rings.
3. Left continuous rings.

The following modules have right strong exchange endomorphism
rings:

1. Cotorsion, in particular, injective and pure-injective.
2. Modules with local endomorphism ring.
3. Continuous.
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PROPERTIES OF RIGHT STRONG EXCHANGE RINGS

Theorem (Cortés Izurdiaga-Guil, [1])
Every right strong exchange ring is semiregular, i. e., if J is the
Jacobson radical of R,

• R/J is von Neumann regular.

• Idempotents lift modulo J
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PROPERTIES OF RIGHT STRONG EXCHANGE RINGS

They are exchange
1. Right strong exchange rings are exchange.

2. There exists an exchange ring which is not strong exchange.
Actually, for any infinite regular cardinal κ, there exists Sκ:

• Any compatible descending chain of length < κ in RCP(Sκ) has a
minimal lower bound.

• There exists a compatible descending chain of length κ in RCP(Sκ)
with no minimal lower bound.

3. Right strong exchange are not left strong exchange.
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EXCHANGE RINGS ARE NOT STRONG EXCHANGE

The idea

Figure 1: Exchange does not implies strong exchange
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THE FULL EXCHANGE PROPERTY



THE FINITE EXCHANGE PROPERTY

Theorem (Warfield)
Modules with exchange endomorphism satisfy the finite exchange
property.

The finite exchange property (Crawley-Jónsson, 1964)
M satisfies the finite exchange property if for any decompostion

X = M′ ⊕ Y =
n⊕
i=1

Ni

with M′ ∼= M, there exists N′
i ≤ Ni with

X = M′
⊕( n⊕

i=1

N′
i
)
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THE FULL EXCHANGE PROPERTY (CRAWLEY-JÓNSSON, 1964)

The full exchange property
M satisfies the full exchange property if for any decompostion

X = M′ ⊕ Y =
⊕
i∈I

Ni

with M′ ∼= M, there exists N′
i ≤ Ni with

X = M′
⊕(⊕

i∈I

N′
i
)

Open problem (Crawley-Jónsson, 1964)
Does the finite exchange property imply the full exchange property?
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FLAT COTORSION MODULES

The endomorphism ring S of a flat cotorsion module M is right strong
exchange.

⇒ S is exchange.

⇒ M has the finite exchange property.

Question 2
Has a flat cotorsion module the full exchange property?
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EXCHANGE MODULES AND SUMMABLE FAMILIES

Summable families
A family of endomorphisms {ui | i ∈ I} of M is summable if for any
m ∈ M, the set

{i ∈ I | (m)ui ̸= 0} is finite.

We can consider
∑

i∈I ui!

Theorem (Huisge Zimmermann-Zimmermann)
The following are equivalent for a module M with S = EndR(M)

1. M has the exchange property.
2. For any summanble family with

∑
i∈I ui = 1, there exists a

summable family of orthogonal idempotents, {ei | i ∈ I} with∑
i∈I ei = 1 and eiS ≤ uiS.
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RIGHT COPRIME FAMILIES

Right coprime families
Right coprime family ⟨ui⟩i∈I in the endomorphism ring S of M is a
summable family {ui | i ∈ I} for which there exists a family of
endomorphisms {ai | i ∈ I} satisfying∑

i∈I

uiai = 1

1. Equivalence relation:

⟨ui⟩i∈I ∼ ⟨vi⟩i∈I ⇔ uiS = viS ∀i ∈ I

2. Preorder relation:

⟨ui⟩i∈I ≤ ⟨vi⟩i∈I ⇔ uiS ≤ viS ∀i ∈ I

Extension of RCP(S)
We have the partially ordered set (RCFI(S),≤).
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MINIMAL ELEMENTS IN RCF(S)

Theorem (Huisge Zimmermann-Zimmermann)
The following are equivalent for a module M with S = EndR(M)

1. M has the exchange property.
2. For any summanble family with

∑
i∈I ui = 1, there exists a

summable family of orthogonal idempotents, {ei | i ∈ I} with∑
i∈I ei = 1 and eiS ≤ uiS.

Notice: ⟨ei⟩i∈I ≤ ⟨ui⟩i∈I in RCF(S)

Question 2.1
Are the coprime families consisting of orthogonal idempotents the
minimal elements in RCF(S)?

Answer
Yes!
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MINIMAL ELEMENTS IN RCF(S)

Theorem (Cortés Izurdiaga-Guil-Srivastava, [2])
The following assertions are equivalent for ⟨ui⟩i∈I ∈ RCF(S):

1. ⟨ui⟩i∈I is a minimal element in RCF(S).
2. There exists a family of orthogonal idempotents {ei | i ∈ I} such
that ⟨ei⟩i∈I = ⟨ui⟩i∈I.

Theorem (Cortés Izurdiaga-Guil-Srivastava, [2])
If M is flat cotorsion with endomorphism ring R, then:

1. For any I and any ⟨ui⟩i∈I ∈ RCF(S), there exists a minimal
⟨ei⟩i∈I ∈ RCF(S) with ⟨ei⟩i∈I ≤ ⟨ui⟩i∈I.

2. M satisfies the full exchange property.
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FINITELY ACCESSIBLE ADDITIVE CATEGORIES AGAIN

If S is a small preadditive category, then:

Theorem
Mod−S is equivalent to the category of unitary modules over a ring
without unit (but with enough idempotents).

Pure-injectives in FAA categories
If C is a FAA category and C is pure-injective, then:

1. End(C) is right strong exchange.
2. C has the full exchange property.
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THANK YOU VERY MUCH!
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